The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 X 0 0 X 0 X X 2X 0 0 X X 0 2X X 2X 2X 0 X 2X 0 X 2X 2X 2X 2X 0 0 0 X X 0 X X 2X 0 0 X X 0 2X X 2X 2X 0 X 2X 0 X 2X 2X 2X 2X 0 0 0 X X 0 X X 2X 0 0 X X 0 2X X 2X 2X 0 X 2X 0 X 2X 2X 2X 2X 0 0
0 0 X 0 2X X 2X X 2X 0 X X 0 2X 0 0 X X 2X 2X 2X 2X X 0 0 X 2X 0 0 X 2X X X 2X 0 2X 0 X X 0 2X 0 0 X X 2X 2X 2X 2X X 0 0 X 2X 0 0 X 2X X X 2X 0 2X 0 X X 0 2X 0 0 X X 2X 2X 2X 2X X 0 0 X 2X 0 0
0 0 0 X 2X 2X 0 2X 2X 2X X 0 2X 0 2X X X 0 X X X 2X X 0 X 2X 0 0 X 2X 2X 2X X X X 2X 2X 0 0 0 X X 2X 2X X 0 0 0 2X X 0 2X 0 X 0 X 2X 2X 2X X X X 2X 2X 0 0 0 X X 2X 2X X 0 0 0 2X X 0 2X 0 X 0 0
generates a code of length 83 over Z3[X]/(X^2) who´s minimum homogenous weight is 162.
Homogenous weight enumerator: w(x)=1x^0+26x^162+162x^166+52x^168+2x^249
The gray image is a linear code over GF(3) with n=249, k=5 and d=162.
This code was found by Heurico 1.16 in 0.0706 seconds.